MakeItFrom.com
Menu (ESC)

EN AC-45000 Aluminum vs. S21460 Stainless Steel

EN AC-45000 aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45000 aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 77
250
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.1
46
Fatigue Strength, MPa 75
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 180
830
Tensile Strength: Yield (Proof), MPa 110
430

Thermal Properties

Latent Heat of Fusion, J/g 470
290
Maximum Temperature: Mechanical, °C 180
920
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 520
1330
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 22
18

Otherwise Unclassified Properties

Base Metal Price, % relative 11
14
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 7.7
3.0
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 1070
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.7
320
Resilience: Unit (Modulus of Resilience), kJ/m3 80
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 17
30
Strength to Weight: Bending, points 24
26
Thermal Shock Resistance, points 8.0
17

Alloy Composition

Aluminum (Al), % 82.2 to 91.8
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.15
17 to 19
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 0 to 1.0
57.3 to 63.7
Lead (Pb), % 0 to 0.3
0
Magnesium (Mg), % 0 to 0.55
0
Manganese (Mn), % 0.2 to 0.65
14 to 16
Nickel (Ni), % 0 to 0.45
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 5.0 to 7.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0 to 0.35
0