MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. 224.0 Aluminum

Both EN AC-45100 aluminum and 224.0 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is 224.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.0 to 2.8
4.0 to 10
Fatigue Strength, MPa 82 to 99
86 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 300 to 360
380 to 420
Tensile Strength: Yield (Proof), MPa 210 to 320
280 to 330

Thermal Properties

Latent Heat of Fusion, J/g 470
390
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 630
650
Melting Onset (Solidus), °C 550
550
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
32
Electrical Conductivity: Equal Weight (Specific), % IACS 95
95

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.8
3.0
Embodied Carbon, kg CO2/kg material 7.9
8.3
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1100
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
16 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
540 to 770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
45
Strength to Weight: Axial, points 30 to 35
35 to 38
Strength to Weight: Bending, points 35 to 39
38 to 41
Thermal Diffusivity, mm2/s 54
47
Thermal Shock Resistance, points 14 to 16
17 to 18

Alloy Composition

Aluminum (Al), % 88 to 92.8
93 to 95.2
Copper (Cu), % 2.6 to 3.6
4.5 to 5.5
Iron (Fe), % 0 to 0.6
0 to 0.1
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0.2 to 0.5
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 4.5 to 6.0
0 to 0.060
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0 to 0.35
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.1