MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. 5456 Aluminum

Both EN AC-45100 aluminum and 5456 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 1.0 to 2.8
11 to 18
Fatigue Strength, MPa 82 to 99
130 to 210
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 300 to 360
320 to 340
Tensile Strength: Yield (Proof), MPa 210 to 320
150 to 250

Thermal Properties

Latent Heat of Fusion, J/g 470
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 550
570
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
29
Electrical Conductivity: Equal Weight (Specific), % IACS 95
97

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 7.9
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1100
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
33 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
170 to 470
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
50
Strength to Weight: Axial, points 30 to 35
33 to 35
Strength to Weight: Bending, points 35 to 39
38 to 40
Thermal Diffusivity, mm2/s 54
48
Thermal Shock Resistance, points 14 to 16
14 to 15

Alloy Composition

Aluminum (Al), % 88 to 92.8
92 to 94.8
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 2.6 to 3.6
0 to 0.1
Iron (Fe), % 0 to 0.6
0 to 0.4
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
4.7 to 5.5
Manganese (Mn), % 0 to 0.55
0.5 to 1.0
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 4.5 to 6.0
0 to 0.25
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.25
Residuals, % 0
0 to 0.15