MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. 6023 Aluminum

Both EN AC-45100 aluminum and 6023 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is 6023 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.0 to 2.8
11
Fatigue Strength, MPa 82 to 99
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 300 to 360
360
Tensile Strength: Yield (Proof), MPa 210 to 320
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 470
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 550
580
Specific Heat Capacity, J/kg-K 890
890
Thermal Conductivity, W/m-K 140
170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
45
Electrical Conductivity: Equal Weight (Specific), % IACS 95
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 7.9
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
38 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
670 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
49
Strength to Weight: Axial, points 30 to 35
35 to 36
Strength to Weight: Bending, points 35 to 39
40
Thermal Diffusivity, mm2/s 54
67
Thermal Shock Resistance, points 14 to 16
16

Alloy Composition

Aluminum (Al), % 88 to 92.8
94 to 97.7
Bismuth (Bi), % 0
0.3 to 0.8
Copper (Cu), % 2.6 to 3.6
0.2 to 0.5
Iron (Fe), % 0 to 0.6
0 to 0.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0.4 to 0.9
Manganese (Mn), % 0 to 0.55
0.2 to 0.6
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 4.5 to 6.0
0.6 to 1.4
Tin (Sn), % 0 to 0.050
0.6 to 1.2
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.15

Comparable Variants