MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. ASTM A372 Grade F Steel

EN AC-45100 aluminum belongs to the aluminum alloys classification, while ASTM A372 grade F steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is ASTM A372 grade F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
200 to 280
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.0 to 2.8
20 to 22
Fatigue Strength, MPa 82 to 99
310 to 380
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 300 to 360
650 to 910
Tensile Strength: Yield (Proof), MPa 210 to 320
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 140
44
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.4
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1100
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
500 to 810
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 30 to 35
23 to 32
Strength to Weight: Bending, points 35 to 39
21 to 27
Thermal Diffusivity, mm2/s 54
12
Thermal Shock Resistance, points 14 to 16
19 to 27

Alloy Composition

Aluminum (Al), % 88 to 92.8
0
Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 2.6 to 3.6
0
Iron (Fe), % 0 to 0.6
96.8 to 97.9
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0.7 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 4.5 to 6.0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants