MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. ASTM B817 Type I

EN AC-45100 aluminum belongs to the aluminum alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
100
Elongation at Break, % 1.0 to 2.8
4.0 to 13
Fatigue Strength, MPa 82 to 99
360 to 520
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 300 to 360
770 to 960
Tensile Strength: Yield (Proof), MPa 210 to 320
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 470
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 630
1600
Melting Onset (Solidus), °C 550
1550
Specific Heat Capacity, J/kg-K 890
560
Thermal Conductivity, W/m-K 140
7.1
Thermal Expansion, µm/m-K 22
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 2.8
4.4
Embodied Carbon, kg CO2/kg material 7.9
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1100
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
2310 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
35
Strength to Weight: Axial, points 30 to 35
48 to 60
Strength to Weight: Bending, points 35 to 39
42 to 49
Thermal Diffusivity, mm2/s 54
2.9
Thermal Shock Resistance, points 14 to 16
54 to 68

Alloy Composition

Aluminum (Al), % 88 to 92.8
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 2.6 to 3.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.6
0 to 0.4
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 4.5 to 6.0
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.4