MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. AWS E316

EN AC-45100 aluminum belongs to the aluminum alloys classification, while AWS E316 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is AWS E316.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.0 to 2.8
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 300 to 360
580

Thermal Properties

Latent Heat of Fusion, J/g 470
290
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.9
4.0
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1100
160

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 30 to 35
20
Strength to Weight: Bending, points 35 to 39
20
Thermal Diffusivity, mm2/s 54
4.0
Thermal Shock Resistance, points 14 to 16
15

Alloy Composition

Aluminum (Al), % 88 to 92.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 2.6 to 3.6
0 to 0.75
Iron (Fe), % 0 to 0.6
58.6 to 69.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.1
11 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0