MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. EN 1.4592 Stainless Steel

EN AC-45100 aluminum belongs to the aluminum alloys classification, while EN 1.4592 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is EN 1.4592 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.0 to 2.8
23
Fatigue Strength, MPa 82 to 99
340
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
82
Tensile Strength: Ultimate (UTS), MPa 300 to 360
630
Tensile Strength: Yield (Proof), MPa 210 to 320
500

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
18
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.9
3.8
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1100
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
130
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
610
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
26
Strength to Weight: Axial, points 30 to 35
23
Strength to Weight: Bending, points 35 to 39
21
Thermal Diffusivity, mm2/s 54
4.6
Thermal Shock Resistance, points 14 to 16
20

Alloy Composition

Aluminum (Al), % 88 to 92.8
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 2.6 to 3.6
0
Iron (Fe), % 0 to 0.6
62.6 to 68.4
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.1
0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0.15 to 0.8
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0