MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. EN 1.4762 Stainless Steel

EN AC-45100 aluminum belongs to the aluminum alloys classification, while EN 1.4762 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is EN 1.4762 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
190
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.0 to 2.8
13
Fatigue Strength, MPa 82 to 99
180
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 300 to 360
620
Tensile Strength: Yield (Proof), MPa 210 to 320
310

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 890
490
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 7.9
2.5
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1100
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
67
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
26
Strength to Weight: Axial, points 30 to 35
23
Strength to Weight: Bending, points 35 to 39
21
Thermal Diffusivity, mm2/s 54
4.6
Thermal Shock Resistance, points 14 to 16
22

Alloy Composition

Aluminum (Al), % 88 to 92.8
1.2 to 1.7
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 2.6 to 3.6
0
Iron (Fe), % 0 to 0.6
69.7 to 75.1
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Nickel (Ni), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 6.0
0.7 to 1.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0