MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. EN 2.4668 Nickel

EN AC-45100 aluminum belongs to the aluminum alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.0 to 2.8
14
Fatigue Strength, MPa 82 to 99
590
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 300 to 360
1390
Tensile Strength: Yield (Proof), MPa 210 to 320
1160

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 7.9
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1100
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
180
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
3490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 30 to 35
46
Strength to Weight: Bending, points 35 to 39
33
Thermal Diffusivity, mm2/s 54
3.5
Thermal Shock Resistance, points 14 to 16
40

Alloy Composition

Aluminum (Al), % 88 to 92.8
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 2.6 to 3.6
0 to 0.3
Iron (Fe), % 0 to 0.6
11.2 to 24.6
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0 to 0.1
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 4.5 to 6.0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0.6 to 1.2
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0