MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. EN 2.4851 Nickel

EN AC-45100 aluminum belongs to the aluminum alloys classification, while EN 2.4851 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is EN 2.4851 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
190
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.0 to 2.8
34
Fatigue Strength, MPa 82 to 99
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 300 to 360
650
Tensile Strength: Yield (Proof), MPa 210 to 320
230

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 170
1200
Melting Completion (Liquidus), °C 630
1360
Melting Onset (Solidus), °C 550
1310
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
49
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 7.9
8.1
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1100
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
170
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
130
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 30 to 35
22
Strength to Weight: Bending, points 35 to 39
20
Thermal Diffusivity, mm2/s 54
2.9
Thermal Shock Resistance, points 14 to 16
17

Alloy Composition

Aluminum (Al), % 88 to 92.8
1.0 to 1.7
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 2.6 to 3.6
0 to 0.5
Iron (Fe), % 0 to 0.6
7.7 to 18
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Nickel (Ni), % 0 to 0.1
58 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 4.5 to 6.0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0 to 0.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0