MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. CC754S Brass

EN AC-45100 aluminum belongs to the aluminum alloys classification, while CC754S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is CC754S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
90
Elastic (Young's, Tensile) Modulus, GPa 72
100
Elongation at Break, % 1.0 to 2.8
11
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 300 to 360
320
Tensile Strength: Yield (Proof), MPa 210 to 320
160

Thermal Properties

Latent Heat of Fusion, J/g 470
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 630
830
Melting Onset (Solidus), °C 550
780
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 140
95
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
27
Electrical Conductivity: Equal Weight (Specific), % IACS 95
30

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 2.8
8.1
Embodied Carbon, kg CO2/kg material 7.9
2.8
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
29
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
130
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 30 to 35
11
Strength to Weight: Bending, points 35 to 39
13
Thermal Diffusivity, mm2/s 54
31
Thermal Shock Resistance, points 14 to 16
10

Alloy Composition

Aluminum (Al), % 88 to 92.8
0 to 0.8
Copper (Cu), % 2.6 to 3.6
57 to 63
Iron (Fe), % 0 to 0.6
0 to 0.7
Lead (Pb), % 0 to 0.1
0.5 to 2.5
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 0.5
Nickel (Ni), % 0 to 0.1
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 4.5 to 6.0
0 to 0.3
Tin (Sn), % 0 to 0.050
0 to 1.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
30.2 to 42.5
Residuals, % 0 to 0.15
0