MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. C61800 Bronze

EN AC-45100 aluminum belongs to the aluminum alloys classification, while C61800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 1.0 to 2.8
26
Fatigue Strength, MPa 82 to 99
190
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
44
Tensile Strength: Ultimate (UTS), MPa 300 to 360
740
Tensile Strength: Yield (Proof), MPa 210 to 320
310

Thermal Properties

Latent Heat of Fusion, J/g 470
230
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 630
1050
Melting Onset (Solidus), °C 550
1040
Specific Heat Capacity, J/kg-K 890
440
Thermal Conductivity, W/m-K 140
64
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
13
Electrical Conductivity: Equal Weight (Specific), % IACS 95
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 7.9
3.1
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1100
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
150
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 30 to 35
25
Strength to Weight: Bending, points 35 to 39
22
Thermal Diffusivity, mm2/s 54
18
Thermal Shock Resistance, points 14 to 16
26

Alloy Composition

Aluminum (Al), % 88 to 92.8
8.5 to 11
Copper (Cu), % 2.6 to 3.6
86.9 to 91
Iron (Fe), % 0 to 0.6
0.5 to 1.5
Lead (Pb), % 0 to 0.1
0 to 0.020
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.1
0
Silicon (Si), % 4.5 to 6.0
0 to 0.1
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0 to 0.020
Residuals, % 0
0 to 0.5