MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. C93700 Bronze

EN AC-45100 aluminum belongs to the aluminum alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
99
Elongation at Break, % 1.0 to 2.8
20
Fatigue Strength, MPa 82 to 99
90
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 27
37
Tensile Strength: Ultimate (UTS), MPa 300 to 360
240
Tensile Strength: Yield (Proof), MPa 210 to 320
130

Thermal Properties

Latent Heat of Fusion, J/g 470
170
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 630
930
Melting Onset (Solidus), °C 550
760
Specific Heat Capacity, J/kg-K 890
350
Thermal Conductivity, W/m-K 140
47
Thermal Expansion, µm/m-K 22
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
10
Electrical Conductivity: Equal Weight (Specific), % IACS 95
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
33
Density, g/cm3 2.8
8.9
Embodied Carbon, kg CO2/kg material 7.9
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1100
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
40
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
79
Stiffness to Weight: Axial, points 14
6.2
Stiffness to Weight: Bending, points 49
17
Strength to Weight: Axial, points 30 to 35
7.5
Strength to Weight: Bending, points 35 to 39
9.6
Thermal Diffusivity, mm2/s 54
15
Thermal Shock Resistance, points 14 to 16
9.4

Alloy Composition

Aluminum (Al), % 88 to 92.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Copper (Cu), % 2.6 to 3.6
78 to 82
Iron (Fe), % 0 to 0.6
0 to 0.15
Lead (Pb), % 0 to 0.1
8.0 to 11
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.1
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 4.5 to 6.0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.050
9.0 to 11
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0 to 0.8
Residuals, % 0
0 to 1.0