MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. R30816 Cobalt

EN AC-45100 aluminum belongs to the aluminum alloys classification, while R30816 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is R30816 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
280
Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.0 to 2.8
23
Fatigue Strength, MPa 82 to 99
250
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 300 to 360
1020
Tensile Strength: Yield (Proof), MPa 210 to 320
460

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Melting Completion (Liquidus), °C 630
1540
Melting Onset (Solidus), °C 550
1460
Specific Heat Capacity, J/kg-K 890
420
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Density, g/cm3 2.8
9.1
Embodied Carbon, kg CO2/kg material 7.9
20
Embodied Energy, MJ/kg 150
320
Embodied Water, L/kg 1100
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
190
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
22
Strength to Weight: Axial, points 30 to 35
31
Strength to Weight: Bending, points 35 to 39
25
Thermal Diffusivity, mm2/s 54
3.3
Thermal Shock Resistance, points 14 to 16
28

Alloy Composition

Aluminum (Al), % 88 to 92.8
0
Carbon (C), % 0
0.32 to 0.42
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
40 to 49.8
Copper (Cu), % 2.6 to 3.6
0
Iron (Fe), % 0 to 0.6
0 to 5.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
1.0 to 2.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.1
19 to 21
Niobium (Nb), % 0
3.5 to 4.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
3.5 to 4.5
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0