MakeItFrom.com
Menu (ESC)

EN AC-45100 Aluminum vs. S39277 Stainless Steel

EN AC-45100 aluminum belongs to the aluminum alloys classification, while S39277 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45100 aluminum and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
250
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.0 to 2.8
28
Fatigue Strength, MPa 82 to 99
480
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 300 to 360
930
Tensile Strength: Yield (Proof), MPa 210 to 320
660

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.9
4.2
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1100
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.5 to 7.6
240
Resilience: Unit (Modulus of Resilience), kJ/m3 290 to 710
1070
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 30 to 35
33
Strength to Weight: Bending, points 35 to 39
27
Thermal Diffusivity, mm2/s 54
4.2
Thermal Shock Resistance, points 14 to 16
26

Alloy Composition

Aluminum (Al), % 88 to 92.8
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 2.6 to 3.6
1.2 to 2.0
Iron (Fe), % 0 to 0.6
56.8 to 64.3
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0.15 to 0.45
0
Manganese (Mn), % 0 to 0.55
0 to 0.8
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.1
6.5 to 8.0
Nitrogen (N), % 0
0.23 to 0.33
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 4.5 to 6.0
0 to 0.8
Sulfur (S), % 0
0 to 0.0020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0.8 to 1.2
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0