MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. 5254 Aluminum

Both EN AC-45300 aluminum and 5254 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is 5254 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 1.0 to 2.8
3.4 to 22
Fatigue Strength, MPa 59 to 72
110 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 220 to 290
240 to 350
Tensile Strength: Yield (Proof), MPa 150 to 230
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 470
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
32
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
11 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
73 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 23 to 29
25 to 37
Strength to Weight: Bending, points 30 to 35
32 to 41
Thermal Diffusivity, mm2/s 60
52
Thermal Shock Resistance, points 10 to 13
10 to 16

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
94.4 to 96.8
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 1.0 to 1.5
0 to 0.050
Iron (Fe), % 0 to 0.65
0 to 0.45
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
3.1 to 3.9
Manganese (Mn), % 0 to 0.55
0 to 0.010
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 4.5 to 5.5
0 to 0.45
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0 to 0.050
Zinc (Zn), % 0 to 0.15
0 to 0.2
Residuals, % 0
0 to 0.15