MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. 535.0 Aluminum

Both EN AC-45300 aluminum and 535.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
70
Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 1.0 to 2.8
10
Fatigue Strength, MPa 59 to 72
70
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 220 to 290
270
Tensile Strength: Yield (Proof), MPa 150 to 230
140

Thermal Properties

Latent Heat of Fusion, J/g 470
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 590
570
Specific Heat Capacity, J/kg-K 890
910
Thermal Conductivity, W/m-K 150
100
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
23
Electrical Conductivity: Equal Weight (Specific), % IACS 120
79

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.0
9.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
24
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 23 to 29
28
Strength to Weight: Bending, points 30 to 35
35
Thermal Diffusivity, mm2/s 60
42
Thermal Shock Resistance, points 10 to 13
12

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0
0 to 0.0050
Copper (Cu), % 1.0 to 1.5
0 to 0.050
Iron (Fe), % 0 to 0.65
0 to 0.15
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
6.2 to 7.5
Manganese (Mn), % 0 to 0.55
0.1 to 0.25
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 4.5 to 5.5
0 to 0.15
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0.1 to 0.25
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0
0 to 0.15