MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. 6018 Aluminum

Both EN AC-45300 aluminum and 6018 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 1.0 to 2.8
9.0 to 9.1
Fatigue Strength, MPa 59 to 72
85 to 89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 220 to 290
290 to 300
Tensile Strength: Yield (Proof), MPa 150 to 230
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 470
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 590
570
Specific Heat Capacity, J/kg-K 890
890
Thermal Conductivity, W/m-K 150
170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
44
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
48
Strength to Weight: Axial, points 23 to 29
28 to 29
Strength to Weight: Bending, points 30 to 35
34 to 35
Thermal Diffusivity, mm2/s 60
65
Thermal Shock Resistance, points 10 to 13
13

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 1.0 to 1.5
0.15 to 0.4
Iron (Fe), % 0 to 0.65
0 to 0.7
Lead (Pb), % 0 to 0.15
0.4 to 1.2
Magnesium (Mg), % 0.35 to 0.65
0.6 to 1.2
Manganese (Mn), % 0 to 0.55
0.3 to 0.8
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 4.5 to 5.5
0.5 to 1.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.15
0 to 0.3
Residuals, % 0
0 to 0.15

Comparable Variants