MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. 7108A Aluminum

Both EN AC-45300 aluminum and 7108A aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 1.0 to 2.8
11 to 13
Fatigue Strength, MPa 59 to 72
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 220 to 290
350
Tensile Strength: Yield (Proof), MPa 150 to 230
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 470
380
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 590
520
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
36
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
610 to 640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 23 to 29
33 to 34
Strength to Weight: Bending, points 30 to 35
38
Thermal Diffusivity, mm2/s 60
59
Thermal Shock Resistance, points 10 to 13
15 to 16

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
91.6 to 94.4
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 1.0 to 1.5
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.65
0 to 0.3
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0.7 to 1.5
Manganese (Mn), % 0 to 0.55
0 to 0.050
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 4.5 to 5.5
0 to 0.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0 to 0.030
Zinc (Zn), % 0 to 0.15
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants