MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. 772.0 Aluminum

Both EN AC-45300 aluminum and 772.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 1.0 to 2.8
6.3 to 8.4
Fatigue Strength, MPa 59 to 72
94 to 160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 220 to 290
260 to 320
Tensile Strength: Yield (Proof), MPa 150 to 230
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 470
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 890
870
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
35
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
350 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 23 to 29
25 to 31
Strength to Weight: Bending, points 30 to 35
31 to 36
Thermal Diffusivity, mm2/s 60
58
Thermal Shock Resistance, points 10 to 13
11 to 14

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
91.2 to 93.2
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 1.0 to 1.5
0 to 0.1
Iron (Fe), % 0 to 0.65
0 to 0.15
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0.6 to 0.8
Manganese (Mn), % 0 to 0.55
0 to 0.1
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 4.5 to 5.5
0 to 0.15
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0.1 to 0.2
Zinc (Zn), % 0 to 0.15
6.0 to 7.0
Residuals, % 0
0 to 0.15

Comparable Variants