MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. A413.0 Aluminum

Both EN AC-45300 aluminum and A413.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is A413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
80
Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 1.0 to 2.8
3.5
Fatigue Strength, MPa 59 to 72
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 220 to 290
240
Tensile Strength: Yield (Proof), MPa 150 to 230
130

Thermal Properties

Latent Heat of Fusion, J/g 470
570
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
590
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
31
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1120
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
7.1
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
120
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
54
Strength to Weight: Axial, points 23 to 29
25
Strength to Weight: Bending, points 30 to 35
33
Thermal Diffusivity, mm2/s 60
52
Thermal Shock Resistance, points 10 to 13
11

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
82.9 to 89
Copper (Cu), % 1.0 to 1.5
0 to 1.0
Iron (Fe), % 0 to 0.65
0 to 1.3
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0 to 0.1
Manganese (Mn), % 0 to 0.55
0 to 0.35
Nickel (Ni), % 0 to 0.25
0 to 0.5
Silicon (Si), % 4.5 to 5.5
11 to 13
Tin (Sn), % 0 to 0.050
0 to 0.15
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0 to 0.5
Residuals, % 0
0 to 0.25