MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. ACI-ASTM CA40 Steel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA40 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is ACI-ASTM CA40 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
310
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.0 to 2.8
10
Fatigue Strength, MPa 59 to 72
460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 220 to 290
910
Tensile Strength: Yield (Proof), MPa 150 to 230
860

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 590
1500
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150
25
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1120
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
89
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
1910
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 29
33
Strength to Weight: Bending, points 30 to 35
27
Thermal Diffusivity, mm2/s 60
6.7
Thermal Shock Resistance, points 10 to 13
33

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
11.5 to 14
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.65
81.5 to 88.3
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.25
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0