MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. AISI 201L Stainless Steel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
190 to 320
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.0 to 2.8
22 to 46
Fatigue Strength, MPa 59 to 72
270 to 530
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 220 to 290
740 to 1040
Tensile Strength: Yield (Proof), MPa 150 to 230
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1120
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
220 to 1570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 29
27 to 37
Strength to Weight: Bending, points 30 to 35
24 to 30
Thermal Diffusivity, mm2/s 60
4.0
Thermal Shock Resistance, points 10 to 13
16 to 23

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.65
67.9 to 75
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
5.5 to 7.5
Nickel (Ni), % 0 to 0.25
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 4.5 to 5.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0