MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. ASTM A387 Grade 22 Steel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 22 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is ASTM A387 grade 22 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.0 to 2.8
21
Fatigue Strength, MPa 59 to 72
160 to 240
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 220 to 290
480 to 600
Tensile Strength: Yield (Proof), MPa 150 to 230
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 470
260
Maximum Temperature: Mechanical, °C 170
460
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.0
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1120
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
85 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
140 to 320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 23 to 29
17 to 21
Strength to Weight: Bending, points 30 to 35
17 to 20
Thermal Diffusivity, mm2/s 60
11
Thermal Shock Resistance, points 10 to 13
14 to 17

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.65
95.1 to 96.8
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 4.5 to 5.5
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0