MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. EN 1.0619 Steel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while EN 1.0619 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is EN 1.0619 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.0 to 2.8
25
Fatigue Strength, MPa 59 to 72
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 220 to 290
510
Tensile Strength: Yield (Proof), MPa 150 to 230
270

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 150
48
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1120
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 23 to 29
18
Strength to Weight: Bending, points 30 to 35
18
Thermal Diffusivity, mm2/s 60
13
Thermal Shock Resistance, points 10 to 13
16

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 1.0 to 1.5
0 to 0.3
Iron (Fe), % 0 to 0.65
96.6 to 99.32
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0.5 to 1.4
Molybdenum (Mo), % 0
0 to 0.12
Nickel (Ni), % 0 to 0.25
0 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 5.5
0 to 0.6
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0