MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. EN 1.4542 Stainless Steel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.0 to 2.8
5.7 to 20
Fatigue Strength, MPa 59 to 72
370 to 640
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 220 to 290
880 to 1470
Tensile Strength: Yield (Proof), MPa 150 to 230
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 170
860
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 590
1380
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1120
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
880 to 4360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 29
31 to 52
Strength to Weight: Bending, points 30 to 35
26 to 37
Thermal Diffusivity, mm2/s 60
4.3
Thermal Shock Resistance, points 10 to 13
29 to 49

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 1.0 to 1.5
3.0 to 5.0
Iron (Fe), % 0 to 0.65
69.6 to 79
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.25
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0