MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. EN 1.4567 Stainless Steel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.0 to 2.8
22 to 51
Fatigue Strength, MPa 59 to 72
190 to 260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 220 to 290
550 to 780
Tensile Strength: Yield (Proof), MPa 150 to 230
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 470
290
Maximum Temperature: Mechanical, °C 170
930
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1120
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
100 to 400
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 29
19 to 27
Strength to Weight: Bending, points 30 to 35
19 to 24
Thermal Diffusivity, mm2/s 60
3.0
Thermal Shock Resistance, points 10 to 13
12 to 17

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 1.0 to 1.5
3.0 to 4.0
Iron (Fe), % 0 to 0.65
63.3 to 71.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Nickel (Ni), % 0 to 0.25
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 4.5 to 5.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0