MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. EN 1.4855 Stainless Steel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while EN 1.4855 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is EN 1.4855 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
150
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 1.0 to 2.8
4.6
Fatigue Strength, MPa 59 to 72
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 220 to 290
500
Tensile Strength: Yield (Proof), MPa 150 to 230
250

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 590
1350
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.0
5.9
Embodied Energy, MJ/kg 150
85
Embodied Water, L/kg 1120
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
19
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 29
18
Strength to Weight: Bending, points 30 to 35
18
Thermal Diffusivity, mm2/s 60
3.7
Thermal Shock Resistance, points 10 to 13
11

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.65
42.6 to 51.9
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.25
23 to 25
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0