MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. EN 1.4971 Stainless Steel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
240
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 1.0 to 2.8
34
Fatigue Strength, MPa 59 to 72
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 220 to 290
800
Tensile Strength: Yield (Proof), MPa 150 to 230
340

Thermal Properties

Latent Heat of Fusion, J/g 470
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 590
1410
Specific Heat Capacity, J/kg-K 890
450
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 22
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.0
7.6
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1120
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
220
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 23 to 29
26
Strength to Weight: Bending, points 30 to 35
23
Thermal Diffusivity, mm2/s 60
3.4
Thermal Shock Resistance, points 10 to 13
19

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.65
24.3 to 37.1
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.25
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 4.5 to 5.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0