MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. EN-MC21120 Magnesium

EN AC-45300 aluminum belongs to the aluminum alloys classification, while EN-MC21120 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is EN-MC21120 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
63 to 75
Elastic (Young's, Tensile) Modulus, GPa 71
46
Elongation at Break, % 1.0 to 2.8
2.2 to 6.7
Fatigue Strength, MPa 59 to 72
84 to 96
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
18
Tensile Strength: Ultimate (UTS), MPa 220 to 290
200 to 270
Tensile Strength: Yield (Proof), MPa 150 to 230
130 to 170

Thermal Properties

Latent Heat of Fusion, J/g 470
350
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 630
600
Melting Onset (Solidus), °C 590
490
Specific Heat Capacity, J/kg-K 890
990
Thermal Conductivity, W/m-K 150
76
Thermal Expansion, µm/m-K 22
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
11
Electrical Conductivity: Equal Weight (Specific), % IACS 120
59

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.0
22
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1120
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
5.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
180 to 320
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
69
Strength to Weight: Axial, points 23 to 29
31 to 43
Strength to Weight: Bending, points 30 to 35
43 to 53
Thermal Diffusivity, mm2/s 60
44
Thermal Shock Resistance, points 10 to 13
11 to 16

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
8.3 to 9.7
Copper (Cu), % 1.0 to 1.5
0 to 0.030
Iron (Fe), % 0 to 0.65
0 to 0.0050
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
88.6 to 91.3
Manganese (Mn), % 0 to 0.55
0.1 to 0.5
Nickel (Ni), % 0 to 0.25
0 to 0.0020
Silicon (Si), % 4.5 to 5.5
0 to 0.2
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0.35 to 1.0
Residuals, % 0
0 to 0.010

Comparable Variants