MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. Sintered 6061 Aluminum

Both EN AC-45300 aluminum and sintered 6061 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is sintered 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 1.0 to 2.8
0.5 to 6.0
Fatigue Strength, MPa 59 to 72
32 to 62
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 220 to 290
83 to 210
Tensile Strength: Yield (Proof), MPa 150 to 230
62 to 190

Thermal Properties

Latent Heat of Fusion, J/g 470
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 590
610
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 150
200
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
52
Electrical Conductivity: Equal Weight (Specific), % IACS 120
170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
0.68 to 7.0
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
28 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 23 to 29
8.6 to 21
Strength to Weight: Bending, points 30 to 35
16 to 29
Thermal Diffusivity, mm2/s 60
81
Thermal Shock Resistance, points 10 to 13
3.8 to 9.4

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
96 to 99.4
Copper (Cu), % 1.0 to 1.5
0 to 0.5
Iron (Fe), % 0 to 0.65
0
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0.4 to 1.2
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 4.5 to 5.5
0.2 to 0.8
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0
0 to 1.5

Comparable Variants