MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. C19800 Copper

EN AC-45300 aluminum belongs to the aluminum alloys classification, while C19800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 1.0 to 2.8
9.0 to 12
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 220 to 290
430 to 550
Tensile Strength: Yield (Proof), MPa 150 to 230
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 470
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 630
1070
Melting Onset (Solidus), °C 590
1050
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 150
260
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
61
Electrical Conductivity: Equal Weight (Specific), % IACS 120
62

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1120
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
770 to 1320
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 23 to 29
14 to 17
Strength to Weight: Bending, points 30 to 35
14 to 17
Thermal Diffusivity, mm2/s 60
75
Thermal Shock Resistance, points 10 to 13
15 to 20

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0
Copper (Cu), % 1.0 to 1.5
95.7 to 99.47
Iron (Fe), % 0 to 0.65
0.020 to 0.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0.1 to 1.0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.25
0
Phosphorus (P), % 0
0.010 to 0.1
Silicon (Si), % 4.5 to 5.5
0
Tin (Sn), % 0 to 0.050
0.1 to 1.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0.3 to 1.5
Residuals, % 0
0 to 0.2