MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. S15500 Stainless Steel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 94 to 120
290 to 430
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.0 to 2.8
6.8 to 16
Fatigue Strength, MPa 59 to 72
350 to 650
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 220 to 290
890 to 1490
Tensile Strength: Yield (Proof), MPa 150 to 230
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 170
820
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 590
1380
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1120
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
890 to 4460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 29
32 to 53
Strength to Weight: Bending, points 30 to 35
26 to 37
Thermal Diffusivity, mm2/s 60
4.6
Thermal Shock Resistance, points 10 to 13
30 to 50

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 1.0 to 1.5
2.5 to 4.5
Iron (Fe), % 0 to 0.65
71.9 to 79.9
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Nickel (Ni), % 0 to 0.25
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 5.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0