MakeItFrom.com
Menu (ESC)

EN AC-45300 Aluminum vs. S36200 Stainless Steel

EN AC-45300 aluminum belongs to the aluminum alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45300 aluminum and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 1.0 to 2.8
3.4 to 4.6
Fatigue Strength, MPa 59 to 72
450 to 570
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 220 to 290
1180 to 1410
Tensile Strength: Yield (Proof), MPa 150 to 230
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 470
280
Maximum Temperature: Mechanical, °C 170
820
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1120
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.7 to 5.6
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 390
2380 to 3930
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 23 to 29
42 to 50
Strength to Weight: Bending, points 30 to 35
32 to 36
Thermal Diffusivity, mm2/s 60
4.3
Thermal Shock Resistance, points 10 to 13
40 to 48

Alloy Composition

Aluminum (Al), % 90.2 to 94.2
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 1.0 to 1.5
0
Iron (Fe), % 0 to 0.65
75.4 to 79.5
Lead (Pb), % 0 to 0.15
0
Magnesium (Mg), % 0.35 to 0.65
0
Manganese (Mn), % 0 to 0.55
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0 to 0.25
6.5 to 7.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 5.5
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0.6 to 0.9
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0