MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. ACI-ASTM CF10SMnN Steel

EN AC-45400 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF10SMnN steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is ACI-ASTM CF10SMnN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
190
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.7
34
Fatigue Strength, MPa 55
260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 260
660
Tensile Strength: Yield (Proof), MPa 130
330

Thermal Properties

Latent Heat of Fusion, J/g 470
340
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 630
1360
Melting Onset (Solidus), °C 560
1310
Specific Heat Capacity, J/kg-K 880
500
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 2.8
7.5
Embodied Carbon, kg CO2/kg material 7.8
3.1
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1100
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
180
Resilience: Unit (Modulus of Resilience), kJ/m3 110
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
26
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 32
22
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 2.6 to 3.6
0
Iron (Fe), % 0 to 0.6
59.1 to 65.4
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
7.0 to 9.0
Nickel (Ni), % 0 to 0.1
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 4.5 to 6.0
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0