MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. AISI 202 Stainless Steel

EN AC-45400 aluminum belongs to the aluminum alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
210 to 300
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 6.7
14 to 45
Fatigue Strength, MPa 55
290 to 330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 260
700 to 980
Tensile Strength: Yield (Proof), MPa 130
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 470
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 560
1360
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1100
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 110
250 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 25
25 to 35
Strength to Weight: Bending, points 32
23 to 29
Thermal Diffusivity, mm2/s 54
4.0
Thermal Shock Resistance, points 12
15 to 21

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 2.6 to 3.6
0
Iron (Fe), % 0 to 0.6
63.5 to 71.5
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
7.5 to 10
Nickel (Ni), % 0 to 0.1
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 4.5 to 6.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0