MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. ASTM Grade HT Steel

EN AC-45400 aluminum belongs to the aluminum alloys classification, while ASTM grade HT steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is ASTM grade HT steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
150
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.7
4.6
Fatigue Strength, MPa 55
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 260
500
Tensile Strength: Yield (Proof), MPa 130
270

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 560
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 7.8
5.4
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1100
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
19
Resilience: Unit (Modulus of Resilience), kJ/m3 110
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 32
18
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
0
Carbon (C), % 0
0.35 to 0.75
Chromium (Cr), % 0
15 to 19
Copper (Cu), % 2.6 to 3.6
0
Iron (Fe), % 0 to 0.6
38.2 to 51.7
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.1
33 to 37
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 4.5 to 6.0
0 to 2.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0