MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. EN 1.5663 Steel

EN AC-45400 aluminum belongs to the aluminum alloys classification, while EN 1.5663 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is EN 1.5663 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
230
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.7
20
Fatigue Strength, MPa 55
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 260
750
Tensile Strength: Yield (Proof), MPa 130
660

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 95
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.5
Density, g/cm3 2.8
8.0
Embodied Carbon, kg CO2/kg material 7.8
2.3
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1100
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
150
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1150
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 25
26
Strength to Weight: Bending, points 32
23
Thermal Shock Resistance, points 12
22

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
0
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 2.6 to 3.6
0
Iron (Fe), % 0 to 0.6
88.6 to 91.2
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.1
8.5 to 10
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 4.5 to 6.0
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0