MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. EN 1.8550 Steel

EN AC-45400 aluminum belongs to the aluminum alloys classification, while EN 1.8550 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is EN 1.8550 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
300
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.7
11
Fatigue Strength, MPa 55
470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 260
1000
Tensile Strength: Yield (Proof), MPa 130
760

Thermal Properties

Latent Heat of Fusion, J/g 470
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 560
1410
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 95
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.4
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1100
67

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
100
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 25
36
Strength to Weight: Bending, points 32
29
Thermal Diffusivity, mm2/s 54
11
Thermal Shock Resistance, points 12
29

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
0.8 to 1.2
Carbon (C), % 0
0.3 to 0.37
Chromium (Cr), % 0
1.5 to 1.8
Copper (Cu), % 2.6 to 3.6
0
Iron (Fe), % 0 to 0.6
94.4 to 96.3
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
0.4 to 0.7
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.1
0.85 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 4.5 to 6.0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0