MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. Nickel 685

EN AC-45400 aluminum belongs to the aluminum alloys classification, while nickel 685 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is nickel 685.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
350
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 6.7
17
Fatigue Strength, MPa 55
470
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 260
1250
Tensile Strength: Yield (Proof), MPa 130
850

Thermal Properties

Latent Heat of Fusion, J/g 470
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 7.8
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1100
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
190
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1820
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 25
42
Strength to Weight: Bending, points 32
31
Thermal Diffusivity, mm2/s 54
3.3
Thermal Shock Resistance, points 12
37

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 2.6 to 3.6
0 to 0.5
Iron (Fe), % 0 to 0.6
0 to 2.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0 to 0.1
49.6 to 62.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 6.0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
2.8 to 3.3
Zinc (Zn), % 0 to 0.2
0.020 to 0.12
Residuals, % 0 to 0.15
0