MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. C14180 Copper

EN AC-45400 aluminum belongs to the aluminum alloys classification, while C14180 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is C14180 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 6.7
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 260
210
Tensile Strength: Yield (Proof), MPa 130
130

Thermal Properties

Latent Heat of Fusion, J/g 470
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 630
1080
Melting Onset (Solidus), °C 560
1080
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 140
370
Thermal Expansion, µm/m-K 22
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.8
9.0
Embodied Carbon, kg CO2/kg material 7.8
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1100
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
28
Resilience: Unit (Modulus of Resilience), kJ/m3 110
69
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 49
18
Strength to Weight: Axial, points 25
6.5
Strength to Weight: Bending, points 32
8.8
Thermal Diffusivity, mm2/s 54
110
Thermal Shock Resistance, points 12
7.4

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
0 to 0.010
Copper (Cu), % 2.6 to 3.6
99.9 to 100
Iron (Fe), % 0 to 0.6
0
Lead (Pb), % 0 to 0.1
0 to 0.020
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
0
Nickel (Ni), % 0 to 0.1
0
Phosphorus (P), % 0
0 to 0.075
Silicon (Si), % 4.5 to 6.0
0
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0