MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. C84000 Brass

EN AC-45400 aluminum belongs to the aluminum alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
65
Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 6.7
27
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 260
250
Tensile Strength: Yield (Proof), MPa 130
140

Thermal Properties

Latent Heat of Fusion, J/g 470
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 630
1040
Melting Onset (Solidus), °C 560
940
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 140
72
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
16
Electrical Conductivity: Equal Weight (Specific), % IACS 95
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
30
Density, g/cm3 2.8
8.6
Embodied Carbon, kg CO2/kg material 7.8
3.0
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
58
Resilience: Unit (Modulus of Resilience), kJ/m3 110
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 49
19
Strength to Weight: Axial, points 25
8.2
Strength to Weight: Bending, points 32
10
Thermal Diffusivity, mm2/s 54
22
Thermal Shock Resistance, points 12
9.0

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 2.6 to 3.6
82 to 89
Iron (Fe), % 0 to 0.6
0 to 0.4
Lead (Pb), % 0 to 0.1
0 to 0.090
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
0 to 0.010
Nickel (Ni), % 0 to 0.1
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 4.5 to 6.0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0 to 0.050
2.0 to 4.0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7