MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. N07752 Nickel

EN AC-45400 aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 6.7
22
Fatigue Strength, MPa 55
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 260
1120
Tensile Strength: Yield (Proof), MPa 130
740

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 2.8
8.4
Embodied Carbon, kg CO2/kg material 7.8
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1100
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
220
Resilience: Unit (Modulus of Resilience), kJ/m3 110
1450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 49
23
Strength to Weight: Axial, points 25
37
Strength to Weight: Bending, points 32
29
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 12
34

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 2.6 to 3.6
0 to 0.5
Iron (Fe), % 0 to 0.6
5.0 to 9.0
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Nickel (Ni), % 0 to 0.1
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 4.5 to 6.0
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.2
0 to 0.050
Residuals, % 0 to 0.15
0