MakeItFrom.com
Menu (ESC)

EN AC-45400 Aluminum vs. N08026 Nickel

EN AC-45400 aluminum belongs to the aluminum alloys classification, while N08026 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45400 aluminum and the bottom bar is N08026 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 6.7
34
Fatigue Strength, MPa 55
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 260
620
Tensile Strength: Yield (Proof), MPa 130
270

Thermal Properties

Latent Heat of Fusion, J/g 470
310
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
41
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 7.8
7.2
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1100
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
170
Resilience: Unit (Modulus of Resilience), kJ/m3 110
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
24
Strength to Weight: Axial, points 25
21
Strength to Weight: Bending, points 32
20
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 88.4 to 92.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 26
Copper (Cu), % 2.6 to 3.6
2.0 to 4.0
Iron (Fe), % 0 to 0.6
24.4 to 37.9
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.55
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.7
Nickel (Ni), % 0 to 0.1
33 to 37.2
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 4.5 to 6.0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.15
0