MakeItFrom.com
Menu (ESC)

EN AC-45500 Aluminum vs. 2014 Aluminum

Both EN AC-45500 aluminum and 2014 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45500 aluminum and the bottom bar is 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 2.8
1.5 to 16
Fatigue Strength, MPa 80
90 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 320
190 to 500
Tensile Strength: Yield (Proof), MPa 250
100 to 440

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 610
630
Melting Onset (Solidus), °C 600
510
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
40
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
3.0
Embodied Carbon, kg CO2/kg material 8.0
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
6.6 to 56
Resilience: Unit (Modulus of Resilience), kJ/m3 430
76 to 1330
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
46
Strength to Weight: Axial, points 34
18 to 46
Strength to Weight: Bending, points 40
25 to 46
Thermal Diffusivity, mm2/s 65
58
Thermal Shock Resistance, points 15
8.4 to 22

Alloy Composition

Aluminum (Al), % 90.6 to 93.1
90.4 to 95
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0.2 to 0.7
3.9 to 5.0
Iron (Fe), % 0 to 0.25
0 to 0.7
Magnesium (Mg), % 0.2 to 0.45
0.2 to 0.8
Manganese (Mn), % 0 to 0.15
0.4 to 1.2
Silicon (Si), % 6.5 to 7.5
0.5 to 1.2
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 0 to 0.070
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15