MakeItFrom.com
Menu (ESC)

EN AC-45500 Aluminum vs. 5026 Aluminum

Both EN AC-45500 aluminum and 5026 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45500 aluminum and the bottom bar is 5026 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 2.8
5.1 to 11
Fatigue Strength, MPa 80
94 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 320
260 to 320
Tensile Strength: Yield (Proof), MPa 250
120 to 250

Thermal Properties

Latent Heat of Fusion, J/g 500
400
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 610
650
Melting Onset (Solidus), °C 600
510
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
31
Electrical Conductivity: Equal Weight (Specific), % IACS 110
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 8.0
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
15 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 430
100 to 440
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
49
Strength to Weight: Axial, points 34
26 to 32
Strength to Weight: Bending, points 40
33 to 37
Thermal Diffusivity, mm2/s 65
52
Thermal Shock Resistance, points 15
11 to 14

Alloy Composition

Aluminum (Al), % 90.6 to 93.1
88.2 to 94.7
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0.2 to 0.7
0.1 to 0.8
Iron (Fe), % 0 to 0.25
0.2 to 1.0
Magnesium (Mg), % 0.2 to 0.45
3.9 to 4.9
Manganese (Mn), % 0 to 0.15
0.6 to 1.8
Silicon (Si), % 6.5 to 7.5
0.55 to 1.4
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 0.070
0 to 1.0
Zirconium (Zr), % 0
0 to 0.3
Residuals, % 0
0 to 0.15