MakeItFrom.com
Menu (ESC)

EN AC-45500 Aluminum vs. A360.0 Aluminum

Both EN AC-45500 aluminum and A360.0 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN AC-45500 aluminum and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
75
Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 2.8
1.6 to 5.0
Fatigue Strength, MPa 80
82 to 150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 320
180 to 320
Tensile Strength: Yield (Proof), MPa 250
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 500
530
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
680
Melting Onset (Solidus), °C 600
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 150
110
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
30
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 430
190 to 470
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
53
Strength to Weight: Axial, points 34
19 to 34
Strength to Weight: Bending, points 40
27 to 39
Thermal Diffusivity, mm2/s 65
48
Thermal Shock Resistance, points 15
8.5 to 15

Alloy Composition

Aluminum (Al), % 90.6 to 93.1
85.8 to 90.6
Copper (Cu), % 0.2 to 0.7
0 to 0.6
Iron (Fe), % 0 to 0.25
0 to 1.3
Magnesium (Mg), % 0.2 to 0.45
0.4 to 0.6
Manganese (Mn), % 0 to 0.15
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 6.5 to 7.5
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0 to 0.5
Residuals, % 0
0 to 0.25