MakeItFrom.com
Menu (ESC)

EN AC-45500 Aluminum vs. ACI-ASTM CN7MS Steel

EN AC-45500 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7MS steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45500 aluminum and the bottom bar is ACI-ASTM CN7MS steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
160
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 2.8
39
Fatigue Strength, MPa 80
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 320
540
Tensile Strength: Yield (Proof), MPa 250
230

Thermal Properties

Latent Heat of Fusion, J/g 500
340
Maximum Temperature: Mechanical, °C 170
1040
Melting Completion (Liquidus), °C 610
1400
Melting Onset (Solidus), °C 600
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 8.0
5.1
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1110
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.2
170
Resilience: Unit (Modulus of Resilience), kJ/m3 430
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 34
19
Strength to Weight: Bending, points 40
19
Thermal Diffusivity, mm2/s 65
3.2
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 90.6 to 93.1
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 0.2 to 0.7
1.5 to 2.0
Iron (Fe), % 0 to 0.25
45.4 to 53.5
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
22 to 25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 6.5 to 7.5
2.5 to 3.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0