MakeItFrom.com
Menu (ESC)

EN AC-45500 Aluminum vs. EN 1.3559 Steel

EN AC-45500 aluminum belongs to the aluminum alloys classification, while EN 1.3559 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN AC-45500 aluminum and the bottom bar is EN 1.3559 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 320
500 to 1420

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 600
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
45
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.2
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
50

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 34
18 to 50
Strength to Weight: Bending, points 40
18 to 36
Thermal Diffusivity, mm2/s 65
12
Thermal Shock Resistance, points 15
15 to 42

Alloy Composition

Aluminum (Al), % 90.6 to 93.1
0 to 0.050
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
0.6 to 1.0
Copper (Cu), % 0.2 to 0.7
0 to 0.3
Iron (Fe), % 0 to 0.25
97.2 to 98.8
Magnesium (Mg), % 0.2 to 0.45
0
Manganese (Mn), % 0 to 0.15
0.6 to 1.0
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 6.5 to 7.5
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.070
0
Residuals, % 0 to 0.1
0